Simple Kids Crafts is a video blog dedicated to reviving the old art of handicrafts for people of all ages. How do oil spills affect aquatic plants? A Miniature Solar Panel Fire Water Balloon Make Clouds in a Bottle Secret Messages Make a Rocket Make a Hovercraft Make an Anemometer Make a Sundial Make a Radio Make an Electroscope Make a Stethoscope Make a Telescope Make a Periscope Make a Camera Bending a stream of water with a comb Lighting a bulb without electricity Simple Motor Cotton Ball Rocks? Salt-Absorbing Art and Science Color Changing Glue Art Baking Soda Clay Oil Sun Catcher Grow a Pineapple Plant! Bead Bowls Wow, what an Air-Gun Funny Diver ! Water boils without fire Ice with Boiling Water Water that boils instantly Water boils in a Paper Pot Soap-driven Boat Pulse Moves Pin Pretty Garden—without Plants Picture made by Fire Magic Pictures Dancing Doll Smoke Goes Down The Dancing Coupl The Umbrella Dance Magic Butterfly Colorful ...
Objectives/Goals
Increasing rocket engine efficiency requires maximizing the total impulse generated and tailoring thrust production to the mass of the rocket. By controlling the design elements of an engine, the total impulse generated can be maximized and the thrust profile can be customized. Last year, I demonstrated that optimal rocket flight parameters can be achieved by matching the rocket mass to engine thrust profile.The goal of this project is to identify critical design elements that can be manipulated to maximize total impulse and customize the engine thrust generation profile to optimize rocket lift.
Methods/Materials
I designed rocket engines that allowed me to investigate the contribution of the nozzle inlet shape, nozzle throat diameter and fuel core length and diameter to engine performance. All rocket engines were built to my design specifications and tested in a static engine test device that I built. Data from the test device was documented using a chart recorder that I designed and built. The Y axis (force) of the chart recorder was calibrated using a spring balance. The data from each engine was analyzed by dividing the area under the curve into 0.1second increments.
Results
Completion of this project identified 2 important design parameters, nozzle shape and fuel core structure. The shape of the nozzle inlet was the single most critical factor. A nozzle inlet angle of 90O resulted in the greatest thrust production; however, approximately 40% of the engines engaged the safety device. In contrast, when the nozzle inlet angle was decreased to 74O, the safety device was never engaged; however, the total impulse was significantly reduced. I increased the total impulse generated without engaging the safety device by increasing the nozzle inlet angle to 86O. Additional design elements that were manipulated to increase the total impulse generated include decreasing the diameter of the nozzle bore, increasing the length of the fuel core and increasing the diameter of the fuel core.
Conclusions/Discussion
Four critical design parameters: nozzle inlet shape, nozzle throat area, fuel core length and fuel core diameter were identified and manipulated to maximize the total force generated and to control the thrust generation profile. By carefully integrating these parameters into the final rocket engine design, individual engines can be customized to achieve the maximum lift of individual rockets.
Comments
Post a Comment