Skip to main content

Kids Projects at Home

Simple Kids Crafts is a video blog dedicated to reviving the old art of handicrafts for people of all ages. How do oil spills affect aquatic plants? A Miniature Solar Panel Fire Water Balloon Make Clouds in a Bottle Secret Messages Make a Rocket Make a Hovercraft Make an Anemometer Make a Sundial Make a Radio Make an Electroscope Make a Stethoscope Make a Telescope Make a Periscope Make a Camera Bending a stream of water with a comb Lighting a bulb without electricity Simple Motor Cotton Ball Rocks? Salt-Absorbing Art and Science Color Changing Glue Art Baking Soda Clay Oil Sun Catcher Grow a Pineapple Plant! Bead Bowls Wow, what an Air-Gun Funny Diver ! Water boils without fire Ice with Boiling Water Water that boils instantly Water boils in a Paper Pot Soap-driven Boat Pulse Moves Pin Pretty Garden—without Plants Picture made by Fire Magic Pictures Dancing Doll Smoke Goes Down The Dancing Coupl The Umbrella Dance Magic Butterfly Colorful ...

How do atoms and molecules arrange themselves in minerals?


Materials

* Large, shallow Baking Pan
* 1 teaspoon (5 ml) dishwashing liquid

Planning the Procedure

* Tap Water * Spoon
* Drinking Straw

1. Fill the pan half full with water, then add the dish washing liquid.
2. Gently stir with the spoon to thoroughly mix the liquids without producing any bubbles.
3. Place one end of the straw beneath the surface of the water.
4. Slowly and gently blow through the straw to make a cluster of 5 to 15 bubbles. CAUTION: Only exhale through the straw. Do not inhale.
5. Move the straw to a different location and blow a single bubble.
6. With the straw, move the bubble so that it touches the bubble cluster.
7. Move the straw to a different location and blow through the straw as before to make a cluster of 5 to 15 bubbles.
8. With the straw, move one bubble cluster so that it touches the other bubble cluster.

Results

The single bubble attaches to the bubble cluster. The two clusters of bubbles join, making one cluster.

Why?

The bubbles represent the chemical particles of a mineral. Chemical particles are the atoms (the building units of matter) or molecules that make up minerals and all matter. A mineral is a solid formed in the earth by nature from substances that were4 never a plant or animal. Such substances are said to be inorganic. The addition of each bubble to the bubble cluster and the joining of the clusters represent the growth of a mineral crystal (a solid made up of atoms arranged in an orderly, regular pattern). Chemical particles, like the bubbles, can move around in a liquid. Just as a single bubble or bubble cluster moves to a place where it
fits in the bubble cluster, chemical particles dissolved in a liquid moveto just the right spot in order to fit with other particles.

One of the four basic characteristics of minerals is their definite chemical composition with atoms arranged in an orderly, regular pattern. Once a chemical particle, like the bubble, moves into the right place, it is held there by the attraction it has to the other chemical particles. This attraction between like chemical particles is called cohesion. The shape and size of the chemical particles determine how they arrange themselves and the pattern they form.

LET'S EXPLORE

Show how the size of the bubbles affects the results. Repeat the experiment twice, first using a narrower straw, then replacing the straw with a cardboard tube from a paper towel roll. Science Fair Hint: As part of a project display, use photographs to represent the arrangement and patterns formed by the different bubble sizes.

SHOW TIME'

1a. Sugar crystals are organic (formed from livingmatter). They are not minerals, but they can be used to represent the ways that crystals in minerals form. Ask an adult to prepare a sugar-gelatin solution by using the following steps:

o Pour t cup (125 ml) of distilled water into a small saucepan.
o Sprinkle -1- ounce (7g) of unflavored gelatin on the surface of the water and let it stand undisturbed for 2 minutes.
o Stir the liquid continuously over medium heat until the gelatin is completely dissolved.
o Slowlyadd 1-1/4 cups (313 ml) of table sugar while stirring.
o Continue to stir until all the sugar is dissolved.
o When the liquidstarts to boil, remove the saucepan from the heat.
o Allow the solution to cool for 15 minutes.
o Pour the cooled solution into a 1-pint (500-ml) glass jar.

Place the jar where it can remain undisturbed for at least 2 weeks. Make daily observations and draw diagrams of the jar's contents. The gelatin provided a surface for the sugar molecules to cling to. Would the molecules cling to other surfaces? Have an adult repeat the previous procedure, omitting the unflavored gelatin. Cut a piece of cotton string slightly longer than the height of the jar. Tie a_paper clip to one end of the cotton string. Lower the paper clip into the jar of solution so that the paper clip rests on the bottom of the jar. Tie the free end of the string to the middle of a pencil laid across the opening of the jar. Make daily observations and diagrams of the jar's contents for at least 2 weeks.

Comments

Popular posts from this blog

Grow a Gummy Bear

This is a neat and easy science project for younger children. All you need is a package of gummy bears, some small see-through containers, water, and a marker. The time frame for this project can vary depending on how much time your child is given for the project. The project can be done in as little as a week (7 days) or it can be stretched out over a couple of months. Here are the basics: Take the small containers and the marker. Label the containers for the number of days your child is going to do the project. (Day 1, Day 2, Day 3, etc.) I recommend empty baby food jars with lids since the day can be written on the lid. Fill the containers about half full of water – cold or room temperature, not hot. For each day of the project, drop a single gummy bear into one jar and close the lid. I sorted my gummies by color, but this is optional.) Store containers in a cool space so that the water in the container does not get too warm and melt the gummy bear. (I stored the...

Fooling Your Brain with a Mirror

Aim: To prove that what we see is often affected by what we expect to see with the help of the mirror image experiment. Materials required: 1. Mirrors – 2 in number, square in shape, 12 inches (30 cm) a side, could be either made out of plastic or glass. 2. Epoxy glue and duct tapes. 3. Wooden dowels – 2 in number with diameter as 1 inch (2.5 cm) and 12 inches (30 cm) long. Procedure: 1.      Stick the mirrors together by pasting their backs. If you have a glass mirror then for safety, tape their edges using the duct tapes to seal the sharp edges. Take the two wooden dowels and paste them right in the centre of the mirrors vertically. 2.      Hold the dowels with each hand and as you look at one side of the mirror move the hand which is on the other side. What do you actually see? What happens? Your brain expects the image in the mirror to move as it is fooled to believe that the image it sees is actually your othe...

The Mathematics of Sympathetic Vibrations

Objectives/Goals  Which notes on a piano can induce sympathetic vibrations on an open string? Mathematical relationships between test note and open string frequencies will be used to predict which notes cause sympathetic vibrations. I predict the three test notes in my sample that are harmonics of the open string will resonate the longest. Methods/Materials  Materials used were: a piano, a stopwatch, a frequency chart, and a helper. I depressed a piano key, the damper lifted and the string was "open," or free to vibrate. I played all the notes in one octave higher than the open string. My helper timed the durations of the tone coming from the open string. I averaged and graphed the results.  Results  The thirteen test keys in each sample caused the open string to resonate. Seven test keys caused brief resonance; the vibration inside the sound box caused the open strings to produce a tone.  Three test keys produced tones of intermedi...